Cyber-Physical Systems: Aspects as a Basis for Robustness and Openness

John A. Stankovic
Department of Computer Science
University of Virginia
March 2009
How does this 67-year old doctor have the body of a 30-year old?

Cyberphysical Systems Research

BENEFITS MAY INCLUDE:

Improved Muscle Tone
Decreased Body Fat
Increased Energy
Increased Sex Drive/Libido
Sharper Thinking
Improved Outlook on Life
Outline

- What are Cyber Physical Systems (CPS)

- Aspects in CPS (cross cutting concerns)
 - Logging
 - (Reactive) Security
 - Robust Localization
 - Power Management
 - Feedback Control
Acknowledgments/Info

- CPS Program (3 years in the making)
 - Initiated with core of about 10 people
 - Expanded to more than 30 researchers
 - Expanded to 100s of researchers

- NSF CPS CFP ($30,000,000 year 1)
- PCAST 2007 report: #1 priority for Federal Investment
- Expanding to other agencies
- European Union - $7B
Definition

• CPS is the co-joining of computation and communication with physical processes.

• CPS exhibits an intimate coupling between the cyber and physical that manifests itself from the nano world to large-scale wide-area systems of systems.
Computing in Physical Systems

- Environmental Networks
- Road and Street Networks
- Industrial Networks
- Building Networks
- Vehicle Networks
- Body Networks

Heterogeneous Wireless Networks with Sensors and Actuators
What's New

- Scale
- Systems of systems
- Confluence of physical, wireless and computing
- Human Participation
- Open
CPS

- Are CPS simply embedded systems on steroids?
 - Interact with the physical world
 - Constraints on cpu, power, cost, memory, bandwidth, ...
 - Control actuators
• Is the Internet just a LAN on steroids?

• Confluence of the right technologies at the right time can result in
 - Fundamental paradigm shift
 - Totally new systems
 - Revolutionize business, science, entertainment, ...
 - Transform how we interact with the physical world
Confluence of Four Key Areas

Cost
Form Factor
Severe Constraints
Small Scale
Closed
Open
Degree of Uncertainty

Real-Time

Embedded Systems

Scheduling
Fault Tolerance
Wired networks
Wireless
Degree of Uncertainty

Wired networks
Wireless
Degree of Uncertainty

Human Models
University of Virginia

Principles

Real-Time

Control

Noisy C.
Sensing
Scale
Real-Time/Actuation
Open

Linear
Adaptive
Distributed
Decentralized
Open
Motivating Example

• Cyber – Physical Interactions
 - Influence on each other
 - Cross disciplinary
1. An unmanned plane (UAV) deploys motes

2. Motes establish an sensor network with power management

3. Sensor network detects vehicles and wakes up the sensor nodes

2. Motes establish an sensor network with power management
Tracking Example (1)

- **Sensing:**
 - Magnetic sensor takes 35 ms to stabilize (affects real-time analysis) (affects sleep/wakeup logic)
 - Physical properties of targets affect algorithms and time to process *(uncertainty fundamental)*
 - Use shape, engine noise, ...

- **Sensor Fusion:**
 - Sensor fusion to avoid false alarms, but power management may have sensors in sleep state (affects fusion algorithms and real-time analysis)
 - Location of nodes, target properties and environmental conditions affect fusion algorithms
Tracking Example (2)

- **Wireless:**
 - Missing and delayed control signals alters FC loops
 - Impossibility results for hard real-time guarantees *(new notions of guarantees)*

- **Humans:**
 - Don’t follow nice trajectories; active avoidance attempts
 - Social models, human models
Realistic (Integrated) Solutions

- CPS must tolerate
 - Failures
 - Noise
 - Uncertainty
 - Imprecision
 - Security attacks
 - Lack of perfect synchrony
 - Disconnectedness
 - Scale
 - Openness
 - Increasing complexity
 - Heterogeneity
Aspects in CPS

- Logging
- (Reactive) Security
- Robust Localization
- Power Control
- FC Loops
Themes

• Requirements of Robustness and Openness
 - Minimal capacity devices

• Adaptive Systems (Dynamic Aspects)

• Produce Consistent Changes Across
 - Protocols
 - Nodes
 - Control Loops
1. An unmanned plane (UAV) deploys motes

2. Motes establish a sensor network with power management

3. Sensor network detects vehicles and wakes up the sensor nodes

VigilNet

Sentry
VigilNet Architecture

Programming Subsys.
- EnviroSuite

Debugging Subsystem
- EnviLog

Networking Subsystem
- Robust Diffusion Tree
- Symmetry Detection
- Radio-Base Wakeup

Power Mgmt Subsystem
- Duty Cycle Scheduling
- Tripwire Mgmt
- Sentry Service

PM Control Driver

Tracking and Classification Subsystem
- Tracking
- Classification
- Velocity Regression
- False Alarm Processing

Context-Aware Subsys.
- Time Sync
- Group Mgmt
- Localization

Reconfiguration Subsystem
- Reprogramming
- Dynamic Config
- Report Engine

Sensing Subsystem
- Frequency-Filter
- Continuous Calibrator
- PIR, MAG, ACOUSTIC

Sensor Drivers

MICA2/XSM/XSN2/MICA2DOT Motes

User Interface & Control Subsystem

University of Virginia
Dynamic Aspect Architecture

Logging

• Open and noisy/uncertain environments
• Limited storage and energy (must be selective)

• Examples:
 - Activate (logging) advice at all MAC and routing protocol entries when E2E comm. performance drops
 - Activate periodically to assess state of system
Logging

• Surprising performance
 - Routes used?
 - Congestion and why?
 - Current topology?
 - Hotspots?
 - How much traffic generated by a node?
 - ...

• Turn on/off
 - Coordinated across CPS to get coverage
 - By area
1. An unmanned plane (UAV) deploys motes

2. Motes establish a sensor network with power management

3. Sensor network detects vehicles and wakes up the sensor nodes

Security - VigilNet

Sentry
VigilNet Architecture

Programming Subsys.
- EnviroSuite

Debugging Subsystem
- EnviroLog

Networking Subsystem
- Robust Diffusion Tree
- Symmetry Detection
- Radio Base Wakeup

Power Mgmt Subsystem
- Duty Cycle Scheduling
- Tripwire Mgmt
- Sentry Service

Tracking and Classification Subsystem
- Tracking
- Classification
- Velocity Regression
- False Alarm Processing

Context-Aware Subsys.
- Time Sync
- Group Mgmt
- Localization

Reconfiguration Subsystem
- Reprogramming
- Dynamic Config
- Report Engine

Sensing Subsystem
- Frequency-Filter
- Continuous Calibrator
- PIR
- MAG
- ACOUSTIC

Sensor Drivers
PM Control Driver
MAC

MICA2 / XSM / XSM2 / MICA2DOT Motes

User Interface & Control Subsystem

University of Virginia
Security Issues

- Every one of the 30 services can be attacked
- Too expensive to make every service attack-proof
- Attacks will evolve anyway
- Cannot collect, re-program, and re-deploy

MICAz mote:
- 8 MHz 8-bit uP
- 128 MB code
- 4 KB data mem
- 250 Kbps radio
Security Approach

• Operate in the presence of security attacks
 - Robust decentralized protocols
 - Runtime control of security vs. performance tradeoffs

• Self-healing architecture
• Evolve to new, unanticipated attacks
• Lightweight solutions required due to severe constraints
Self-Healing Architecture

- Self-healing
- Monitor/Analyze/Event emit
- Classification
- Tracking
- Report Engine
- EnviroLog
- Reprogramming
- Localization
- Time Synchronization
- Group Management
- Aspect Security
- Aspect Group Management
- Aspect Power Management
- Power Management
- MAC
- Aspect Encryption
- Aspect Sensing
- Routing
- Power Management Control Driver
- Sensor Driver

Infrastructure:

- t-kernel
SIGF: Secure Routing

- The SIGF family provides incremental steps between stateless and shared-state protocols.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>General Approach</th>
<th>Corruption</th>
<th>Wormhole</th>
<th>HELLO flood</th>
<th>Black hole</th>
<th>Sybil</th>
<th>Replay DoS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGF</td>
<td>Dynamic Binding</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>SIGF-0</td>
<td>Nondeterminism</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>SIGF-1</td>
<td>Local Reputation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
</tr>
<tr>
<td>SIGF-2</td>
<td>Cryptography</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

- SIGF allows efficient operation when no attacks are present, and good enough security when they are.
Dynamic Aspects

• Mechanism for implementing the “right defense at the right time” strategy
 - Switch consistently
 - Choose the correct keys
Other Security Issues

• Encrypt all control messages when attack suspected
 - Time sync, localization, power management

• Across nodes: Double the key lengths and increase message size
Robust Localization

Accurate Node Location in Complex Environments
GPS

- Not Cost Effective
- Line of Sight
Range Free

- High Anchor Density
- Inaccurate
- Large Areas without anchors
Range Free

DV-Hop

Inaccurate
Low Cost - Accurate

Spotlight

Line of Sight

\[(X_1, Y_1, R_1) \text{ at } T_1\]
\[(X_2, Y_2, R_2) \text{ at } T_2\]
CPS

- Complex physical properties of environments render "individual" solutions brittle
Hierarchical Framework

Choose best / Weighted average

If not localized - try another algorithm

All nodes have a location at this point.
Evaluation

• TOSSIM
 - 400 nodes in 300x300ft²
 - 200x200ft² obstructed area
 - 50ft radio range
 - 10% nodes have GPS
 - 15% nodes in open area can’t be localized
Evaluation

- GPS
- Spotlight

- DV-Hop
- Centroid

(time)
Evaluation

All nodes are localized.
Dynamic Aspects

• Weave in new localization protocols as required
Power Management

• Power Management in the Small
 – Individual protocols: MAC, Routing, Clock Sync, Localization

• Power Management in the Large
 – Overarching protocols for additional power savings
 • Sentry Service
 • Tripwire Management Service
 • Duty Cycle
 • Differential Surveillance
Sentry Duty-Cycle Scheduling

- A common period p and duty-cycle β is chosen for all sentries, while starting times T_{start} are randomly selected.
Differentiated Surveillance Solution

DOC = Degree of Coverage

DOC = 1

DOC = 2

Dynamic

University of Virginia
Aspects

• Sets of coordinated changes (pointcuts in)
 - In MAC
 - In Routing
 - In Clock Sync
 - For duty cycle
 - Turn off/on tripwire section
Feedback Control

- Node Level
- Neighborhood Level
- System Level
- Systems of Systems Level

- Explicit and Implicit Interactions Across FC loops
Component-Based (today - mostly)

Component

Reuse
Modularity
Portability
Reconfigure

Beginning to consider performance
Component-Based (Tomorrow)

Support for control; reflect the physical

Support for cross cutting performance
security
mobility
dependability
costs
real-time
power
dynamics
openness
Interaction Among FC Loops

• “n” controllers increase/decrease control parameter in same direction
 - overshooting

• “n” controllers fight each other
 - Change parameters in opposite directions
Examples

• Real-Time: monitor E2E delay
 - Change sleep cycle (PM), backoff times (MAC), congestion thresholds (Routing), packet aggregation amounts (Middleware), sensing rates (SP), ...

• Power Control: monitor voltage
 - Change duty cycle, coverage, sector policy, message rates
Final Thoughts (1)

• **CPS - Enabler for Dramatic Innovation**
 - New global-scale, personal medical delivery systems
 - New paradigms for scientific discovery
 - Smart (Micro) Agriculture
 - Towards the end of terrorism
 - (Mostly) Wireless Airplanes
 - Next Generation Internet
Final Thoughts (2)

• Connection to the physical world will be so pervasive that systems will be open even if you think they are not

• Degree of uncertainty is high

• Flexibility offered by (Dynamic) AOP has great potential